Physiologically relevant and portable tandem ubiquitin-binding domain stabilizes polyubiquitylated proteins.

نویسندگان

  • An Tyrrell
  • Karin Flick
  • Gary Kleiger
  • Hongwei Zhang
  • Raymond J Deshaies
  • Peter Kaiser
چکیده

Ubiquitylation of proteins can be a signal for a variety of cellular processes beyond the classical role in proteolysis. The different signaling functions of ubiquitylation are thought to rely on ubiquitin-binding domains (UBDs). Several distinct UBD families are known, but their functions are not understood in detail, and mechanisms for interpretation and transmission of the ubiquitin signals remain to be discovered. One interesting example of the complexity of ubiquitin signaling is the Saccharomyces cerevisiae transcription factor Met4, which is regulated by a single lysine-48 linked polyubiquitin chain that can directly repress activity of Met4 or induce degradation by the proteasome. Here we show that ubiquitin signaling in Met4 is controlled by its tandem UBD regions, consisting of a previously recognized ubiquitin-interacting motif and a novel ubiquitin-binding region, which lacks homology to known UBDs. The tandem arrangement of UBDs is required to protect ubiquitylated Met4 from degradation and enables direct inactivation of Met4 by ubiquitylation. Interestingly, protection from proteasomes is a portable feature of UBDs because a fusion of the tandem UBDs to the classic proteasome substrate Sic1 stabilized Sic1 in vivo in its ubiquitylated form. Using the well-defined Sic1 in vitro ubiquitylation system we demonstrate that the tandem UBDs inhibit efficient polyubiquitin chain elongation but have no effect on initiation of ubiquitylation. Importantly, we show that the nonproteolytic regulation enabled by the tandem UBDs is critical for ensuring rapid transcriptional responses to nutritional stress, thus demonstrating an important physiological function for tandem ubiquitin-binding domains that protect ubiquitylated proteins from degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ubiquitin-binding domains.

The covalent modification of proteins by ubiquitination is a major regulatory mechanism of protein degradation and quality control, endocytosis, vesicular trafficking, cell-cycle control, stress response, DNA repair, growth-factor signalling, transcription, gene silencing and other areas of biology. A class of specific ubiquitin-binding domains mediates most of the effects of protein ubiquitina...

متن کامل

The polyglutamine neurodegenerative protein ataxin-3 binds polyubiquitylated proteins and has ubiquitin protease activity.

The ubiquitin-proteasome pathway is critically involved in the pathology of neurodegenerative diseases characterized by protein misfolding and aggregation. Data in the present study suggest that the polyglutamine neurodegenerative disease protein, ataxin-3 (AT3), functions in the ubiquitin-proteasome pathway. AT3 contains an ubiquitin interaction motif (UIM) domain that binds polyubiquitylated ...

متن کامل

Peripheral endoplasmic reticulum localization of the Gp78 ubiquitin ligase activity.

Gp78 (also known as AMFR and RNF45) is an E3 ubiquitin ligase that targets proteins for proteasomal degradation through endoplasmic reticulum (ER)-associated degradation (ERAD). In this study, we showed that gp78-mediated ubiquitylation is initiated in the peripheral ER. Substrate monoubiquitylation and gp78 CUE domain integrity restricted substrate to the peripheral ER, where CUE domain intera...

متن کامل

Doa1 is a Cdc48 adapter that possesses a novel ubiquitin binding domain.

Cdc48 (p97/VCP) is an AAA-ATPase molecular chaperone whose cellular functions are facilitated by its interaction with ubiquitin binding cofactors (e.g., Npl4-Ufd1 and Shp1). Several studies have shown that Saccharomyces cerevisiae Doa1 (Ufd3/Zzz4) and its mammalian homologue, PLAA, interact with Cdc48. However, the function of this interaction has not been determined, nor has a physiological li...

متن کامل

BAG6 regulates the quality control of a polytopic ERAD substrate

BAG6 participates in protein quality control and, here, we address its role in endoplasmic-reticulum-associated degradation (ERAD) by using the polytopic membrane protein OpD, an opsin degron mutant. Both BAG6 knockdown and BAG6 overexpression delay OpD degradation; however, our data suggest that these two perturbations are mechanistically distinct. Hence, BAG6 knockdown correlates with reduced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 46  شماره 

صفحات  -

تاریخ انتشار 2010